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5.1 REPONSE FREQUENTIELLE

■ Réponse fréquentielle d’un système
■ Réponse à une excitation sinusoïdale
■ Réponse à une excitation périodique
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x(t)

h(t)

y(t) = (h � x) (t)

Réponse fréquentielle d’un système LIT

Sa
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Système linéaire invariant dans le temps = filtrage temporel

y(t) =
� +⇥

�⇥
h(�)x(t� �) d� ⇥⇤ X(⇥)H(⇥)

Réponse impulsionnelle

h(t) = Sa{�}(t)

Condition de stabilité BIBO:
� +⇥

�⇥
|h(t)| dt < +⇥ � h ⇤ L1

Réponse fréquentielle

H(�) =
� +⇥

�⇥
h(t)e�j�t dt = F{h}(t) (bien définie, car h ⇥ L1)

Deux représentations :

Parties réelle et imaginaire: H(�) = RH(�) + jIH(�)

Réponse d’amplitude et de phase: H(�) = AH(�) · ej�H(�)
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Réponse à une excitation sinusoïdale

Réponse d’amplitude Réponse de phase

Réponse fréquentielle

ej�0t H(�0) · ej�0t

h(t)
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Réponse à une excitation sinusoïdale complexe

xc(t) = ej�0t

yc(t) = (h ⇥ xc)(t) = H(�0) · ej�0t = H(�0) · xc(t)

Réponse à une excitation sinusoïdale réelle

x(t) = A cos(⇥0t + �) = Re
�
Aej�ej⇥0t

⇥

y(t) = Re
�
Aej�yc(t)

⇥
= Re

�
Aej�H(⇥0)ej⇥0t

⇥
= A · AH(⇥0) · cos (⇥0t + � + �H(⇥0))

Conclusion: La réponse à une excitation sinusoïdale est une sinusoïde de même fréquence
avec un facteur d’atténuation et un déphasage spécifiés par la réponse fréquentielle (amplitude
et phase) du système LIT.

Calcul par transformation de Fourier

ej�0t ⇤ 2⇥�(⇤ � ⇤0)

yc(t) ⇤ Xc(⇤) · H(⇤) = 2⇥�(⇤ � ⇤0) · H(⇤) = H(⇤0) · 2⇥�(⇤ � ⇤0)

Calcul temporel (rappel)

yc(t) = (h ⇥ xc)(t) =
� +⇥

�⇥
h(�) · ej⇥0(t��) d� =

� +⇥

�⇥
h(�)e�j⇥0� d� ej⇥0t = H(⇥0) · ej⇥0t
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u2(t) = y(t)
Equation différentielle:
d
dt

y(t) + s0y(t) = s0x(t), s0 =
1

RC

Exemple: filtre RC

u1(t) = x(t)

i(t)R

C

�H(�) = � arctan(�/s0)

�

AH(�) =
s0�

�2 + s2
0

H(�) =
s0

j� + s0

�
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Recherche explicite de la réponse à une excitation sinusoïdale
(méthode des phaseurs):

x(t) = ej�0t

y(t) = H(�0)ej�0t � y�(t) + s0y(t) = (j�0 + s0)H(�0)ej�0t

(j�0 + s0)H(�0)ej�0t = s0e
j�0t � H(�0) =

s0

j�0 + s0
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xT0(t) yT0(t)
Signal d’excitation périodique

xT0(t) = xT0(t + kT0), ⌅k ⇤ Z

Série de Fourier: xT0(t) =
�

n⇥Z
cnejn�0t, cn =

1
T0

⇥ T0
2

�T0
2

xT0(t)e
�jn�0t dt, ⇥0 =

2�

T0

Réponse du système à une excitation périodique

yT0(t) = (h ⇥ xT0) (t) =
�

n⇥Z
cn · H(n⇥0) · ejn�0t (par linéarité)

Réponse à une excitation périodique

h(t)
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Conclusion: La réponse d’un système LIT à une excitation périodique est forcément périodique

Périodicité de la réponse (argument temporel):

y(t + kT0) = (h ⇥ xT0(· + kT0)) (t) = (h ⇥ xT0) (t) = y(t)

Calcul par transformation de Fourier
⇤

n�Z
cnejn�0t ⇤ 2⇥

⇤

n�Z
cn�(⇤ � n⇤0)

yT0(t) ⇤ XT0(⇤) · H(⇤) = H(⇤) ·
�

2⇥
⇤

n�Z
cn�(⇤ � n⇤0)

⇥
= 2⇥

⇤

n�Z
H(n⇤0) · cn�(⇤ � n⇤0)

Hideal(�) =

�
1, � � �L

0, sinon
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5.2 FILTRES A DISTORSION REDUITE

■ Filtres idéaux
■ Filtre passe-bas idéal
■ Filtre passe-bande idéal

■ Filtres à phase linéaire

8

Bande passante

Bande bloquante

(équivalent à un retard pur)�H(!) = �j!t0
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AH(⇥) =

⇤
1, |⇥| < ⇥L

0, |⇥| > ⇥L

�H(⇥) = 0, ⇤⇥

h(t) =
⇥L

�
sinc

�
t

�/⇥L

⇥
F�⇥ H(⇥) = rect

�
⇥

2⇥L

⇥F�1

N.B. Le filtre passe-bas idéal n’est pas causal–donc pas réalisable!
Toutefois, c’est un outil très utile pour comprendre et analyser les systèmes.

Filtre passe-bas idéal

�

⇥L

⇥L

�

��L

AH(�)

�L

�

�H(�) = 0
�

h(t)

t
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Réponse fréquentielle:

H(�) = rect
�

� + �0

B

⇥
+ rect

�
� � �0

B

⇥

�0: fréquence centrale

B: bande passante

�

F�1

rect
� �

B

⇥

�(⇥ � ⇥0)

Filtre passe-bande idéal

 

=

10

F�1

B

B

�

2�

B

��0

H(�)

�0

�

�

�(⇥ + ⇥0)

�

��0 �0

t

h(t)

⇤
  ⌥

  ⇧

B

2�
sinc

�
t

2�/B

⇥

�
2 cos(⇥0t)

⌅
  �

  ⌃

B
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Symétrie paire autour de t = 0 h(t) = h(�t)

�
h(t) avec symétrie

paire autour de t = 0

⇥
⇥ �H(⇥) =

⇤
0, RH(⇥) � 0
±�, RH(⇥) < 0

Réponse impulsionnelle à symétrie paire

11

��

h(t)

t

RH(�), f. paire

IH(�), f. nulle

AH(�), f. paire

+�
�H(�)

�

�

�

�
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Symétrie paire autour de t = t0 g(t0 + �) = g(t0 � �) = h(�)

�
g(t) avec symétrie

paire autour de t = t0

⇥
⇤ �G(⇥) =

⇤
�⇥t0, RH(⇥) � 0
�⇥t0 ± �, RH(⇥) < 0

= phase linéaire!

Phase linéaire: cas de la symétrie paire
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t0 = tL/2 tL

AG(⇥) = AH(⇥)

�G(⇥) = �H(⇥)� ⇥t0 (modulo 2�)

g(t) g(t) = h(t� t0) ⇤⌅ H(�) · e�j�t0

t

AG(�), f. paire

�

�

�G(�)

��t0
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h(t) = �h(�t)

�
h(t) avec symétrie

impaire autour de t = 0

⇥
⇥ �H(⇥) =

⇤
+�/2, IH(⇥) > 0
��/2, IH(⇥) < 0

Réponse impulsionnelle à symétrie impaire

13

Symétrie impaire autour de t = 0

�tL/2
+tL/2 t

h(t)

IH(�), f. impaire

AH(�), f. paire

�

� �

�

�H(�)

RH(�), f. nulle

+�
2

��
2
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g(t0 + �) = �g(t0 � �) = h(�)

�
g(t) avec symétrie

impaire autour de t = t0

⇥
⇥ �G(⇥) =

⇤
�⇥t0 + �/2, IH(⇥) > 0
�⇥t0 � �/2, IH(⇥) < 0

= phase linéaire!

Phase linéaire: cas de la symétrie impaire
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Symétrie impaire autour de t = t0

AG(⇥) = AH(⇥)
�G(⇥) = �H(⇥)� ⇥t0 (modulo 2�)

g(t)

tL

t

t0 =
tL
2

g(t) = h(t� t0) ⇤⌅ H(�) · e�j�t0 AG(�), f. paire

�

�

�G(�)
��t0 + �

2
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5.3 ECHANTILLONNAGE DE SIGNAUX

■ Signal échantillonné analogique
■ Echantillonnage et répétition spectrale
■ Dualité avec les séries de Fourier
■ Formule de Poisson
■ Théorème d’échantillonnage (Shannon)
■ Reconstruction d’un signal analogique
■ Généralisation du théorème d’échantillonnage
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Signal analogique échantillonné

16

2TeTe

xe(t)
x(t)

t

Xe(�)

��e �e

�

�e

Caractéristiques de Xe(�)

Fonction périodique (somme d’harmoniques)

Période: ⇥e =
2�

Te
(t.q., ⇥eTe = 2�)

Forme: dépend des échantillons x(nTe) de x(t)

Echantillonnage idéal

Multiplication avec un peigne de Dirac

xe(t) = x(t)⇥
�

n�Z
�(t� nTe) =

�

n�Z
x(nTe)�(t� nTe)

Calcul de la transformation de Fourier

Xe(⇥) =
⇥ +⇥

�⇥

�

n⇤Z
x(nTe)�(t� nTe)e�j�t dt =

�

n⇤Z
x(nTe)

⇥ +⇥

�⇥
�(t� nTe)e�j�t dt

=
�

n⇤Z
x(nTe)e�j�nTe
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X(�)

�L

�

Echantillonnage et répétition spectrale
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⇥e =
2�

Te

Xe(�)

�e > 2�L

�
�L

��
e < 2�L

�

X �
e(�)

Signal échantillonné

xe(t) = x(t)⇤
⇧

k�Z
�(t�kTe)

F⇧⌃ Xe(⇤) =
1
2⇥

⇤
X ⌅ 2⇥

Te

⇧

n�Z
�

�
·� n

2⇥

Te

⇥⌅
(⇤)

Xe(⇥) =
1
Te

⇤

n�Z
X

�
⇥ � n

2�

Te

⇥

t

x(t)

Te 2Te
. . .

T �
e

“sous-échantillonnage”

t

x(t)

. . .
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Périodisation dans le temps ⇥0 =
2�

T0

xT0(t) =
�

k�Z
x(t� kT0)

XT0(⇥) = ⇥0

�

n�Z
X(n⇥0)�(⇥ � n⇥0)

F�⇥
�

�0X(�)

2�0

Dualité avec les séries de Fourier

18

�0

T0

t

. . .

Xe(⇥) =
⇥0

2�

�

n�Z
X(⇥ � n⇥0)

�0

�

Echantillonnage dans le temps
xe(t) =

�

k�Z
x(kT0)�(t� kT0)

F�⇥
T0 2T0

x(t)

t

. . .
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Formule de Poisson

19

Peigne de Dirac
�

k�Z
�(t + k) F�⇥ 2⇥

�

n�Z
�(⇤ + n2⇥)

Formule de Poisson
�

k�Z
f(k) =

�

n�Z
F (2�n)

Valide également pour f, F � L1

Justification:

⌅f ⇤ S, ⌃f,
X

k�Z
�(· + k)⌥ =

1
2⇥

⌃F, 2⇥
X

n�Z
�(· + n2⇥)⌥ (Parseval)

⇥
X

k�Z
f(k) =

X

n�Z
F (2⇥n)

Formule de Poisson et échantillonnage

f(t) = x(t)e�j�0t F�⇥ F (⇥) = X(⇥ + ⇥0) (modulation)

�

k⇥Z
f(k) =

�

k⇥Z
x(k)e�j�0k =

�

n⇥Z
F (2�n) =

�

n⇥Z
X(2�n + ⇥0)

⇤ Xe(⇥) =
�

k⇥Z
x(k)e�jk� =

�

n⇥Z
X(⇥ + 2�n)

5-Unser / Signaux et systèmes SV

X(�)

��max �max

Xe(�)

�e

�

N.B. En pratique, le signal x(t) doit être filtré avant l’échantillonnage avec un filtre
passe-bas analogique (filtre de garde ou «anti-aliasing») de façon que sa largeur de
bande soit bien limitée.

Théorème d’échantillonnage

VideoDemo
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�

�e

Théorème [Shannon, 1949]
Une fonction x(t) (à bande limitée) qui ne contient pas de fréquences supérieures
à ⇥max = 2�fmax est complètement déterminée par ses échantillons {x(kTe)}k�Z
pour autant que:

Te =
2�

⇥e
� 1

2fmax

ou ⇥e ⇥ 2⇥max
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Fréquence de coupure �c:
�max < �c < �e � �max

X(�)

��max �max

Xe(�)

�max

�

Reconstruction du signal analogique
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Reconstruction par filtrage passe-bas idéal

xe(t)

�c

Te

�e

�

2�c

x(t)
X(�) = Xe(�) · Terect

�
�

2�c

⇥

�

t

t
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Reconstruction par filtrage idéal

xe(t) =
�

k�Z
x(kTe)�(t� kT )

�(t)

x(t) =?

Formule de reconstruction de Shannon
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sinc
�

t

Te

⇥
= F�1

⇤
Terect

�
·

2�/Te

⇥⌅
(t)�e

Te

Formule de reconstruction (signal à bande limitée)

x(t) =
�

xe ⇤ sinc
�

·
Te

⇥⇥
(t) =

⇤

k�Z
x(kTe)sinc

�
t� kTe

Te

⇥
�max < �e/2

Propriété d’interpolation:

sinc(k) = �k � xrec(t)
��
t=kTe

= x(kTe)
xrec(t)

t
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Système de reconstruction pratique

{x(kT )}k�Z

xSH(t)
hs(t)

Convertisseur N/A réel

Filtre de 
lissageN/A
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xrec(t) = (hs � xSH) (t)

h(t) =
�

rect
�

·� T/2
T

⇥
⇤ hs

⇥
(t)Modèle équivalent

xe(t) =
�

k�Z
x(kT )�(t� kT ) xrec(t) =

�

k�Z
x(kT )h(t� kT )

h(t)

Critères de design pour le filtre de lissage

Bonne approximation du filtre idéal: |Hs(⇤)| ⇥ 1
sinc (⇤T/(2⇥))

pour ⇤ ⌅ [� �
T , �

T ]

Interpolation: xrec(kT ) = x(kT ) ⇤ h(kT ) = �k ⇤ 1
T

⇤

n�Z
H

�
⇤ +

2⇥n

T

⇥
= 1


